Pomůcka pro podporu modelování ve výpočetním programu RFEM

část:
Seznámení s prostředím výpočetního programu RFEM

Obsah:

- 1. Založení nového modelu
- 2. Uživatelské prostředí
 - 2.1 Pracovní plocha
 - 2.2 Navigátor
 - 2.3 Panel nástrojů
 - 2.4 Tabulky
 - 2.5 Nápověda k programu
 - 2.6 Nastavení jednotek

1) Založení nového modelu

Nový model v programu RFEM založíme kliknutím na Soubor -> Nový.

V dialogovém okně nastavme základní údaje o modelu:

- Název modelu (popřípadě také popis modelu)
- Složku, ve které bude model uložen
- Typ modelu (3D nebo 2D model)
- Normu pro klasifikaci zatěžovacích stavů a kombinací
- Orientaci globální osy Z
- Popřípadě další

Založení nového modelu potvrdíme tlačítkem OK.

Ukázka založení nového modelu je zobrazena na videu 1 na další straně.

Video 1: Založení nového modelu

2) Uživatelské prostředí

Nejdůležitějšími částmi uživatelského prostředí jsou:

- pracovní plocha
- navigátor
- panel nástrojů
- tabulky

Uživatelské prostředí a jeho rozdělení je zobrazeno na obr. 1 na další straně.

1. Seznámení s prostředím výpočetního programu RFEM

Obr: Uživatelské prostředí RFEMu a jeho hlavní části

2.1 Pracovní plocha

Pracovní plocha je okno v uživatelském prostředí, kde vytváříme model, kde jsou zobrazeny výsledky výpočtu a podobně.

Nastavení barvy pozadí pracovní plochy:

Nastavení -> Správce konfigurací -> Dostupné konfigurace: Standardní konfigurace s bílým pozadím nebo Standardní konfigurace s černým pozadím.

1

Zavřít

2.1 Pracovní plocha

Nastavení bodového rastru:

Nastavení bodového rastru provedeme přes dialogové okno, které zobrazíme pomocí tlačítka umístěného v panelu nástrojů:

Nastavit lze vypnutí/zapnutí zobrazení rastru, počet bodů rastru, vzdálenost mezi body rastru a jiné. Nastavení potvrdíme tlačítkem **OK**.

2.2 Navigátor projektu

Navigátor projektu obsahuje údaje o úloze. Tyto údaje jsou přehledně uspořádané ve stromové struktuře.

Zapnutí/vypnutí navigátoru panelů provedeme pomocí tlačítka umístěného v panelu nástrojů:

Navigátor projektu má 4 záložky:

- 1) Navigátor Data obsahuje údaje o modelu konstrukce, o zatíženích a výsledky výpočtu
- 2) Navigátor Zobrazit zde lze nastavit grafické zobrazení v pracovním okně pomocí zaškrtávacích políček
- Navigátor Pohledy slouží k nastavení pohledů na model a viditelnosti objektů
- Navigátor Výsledky zde lze vybrat a nastavit grafické zobrazení výsledků

2.2 Navigátor projektu

Navigátor Data

Navigátor Zobrazit

Navigátor Pohledy

Navigátor Výsledky

2.3 Panel nástrojů

Panely nástrojů obsahují tlačítka, kterými lze spustit nejdůležitější příkazy:

Lze měnit uspořádání a obsah panelů nástrojů kliknutím na: **Zobrazit** -> **Upravit panely nástrojů**.

Panely nástrojů lze přemisťovat – uchopením myší je lze přetáhnout na požadované místo.

2.4 Tabulky

Tabulky se nacházejí v dolní části okna RFEMu. Zapnutí/vypnutí tabulek provedeme pomocí tlačítka umístěného v panelu nástrojů:

1.1 Uzly													
	A	В	С	D	E	F							
Uzel		Vztažný	Souřadný										
Č.	Typ uzlu	uzel	systém	X [mm]	Y [mm]	Z [mm]							
1	Standardní 💽	0	<u>K</u> artézský	0.00	-150.00	-168.75							
2	Standardní	0	<u>K</u> artézský	0.00	-150.00	168.75							
3	Standardní	0	<u>K</u> artézský	0.00	0.00	-168.75							
4	Standardní	0	<u>K</u> artézský	0.00	0.00	0.00							
Uzly	Uzly Linie Materiály Plochy Tělesa Otvory Uzlové podpory Liniové podpory Plošné podpory Liniové klouby												

Program nabízí 4 skupiny tabulek:

- 1) Tabulky pro zadání údajů o modelu
- 2) Tabulky pro zadání údajů o zatěžovacích stavech a kombinacích
- 3) Tabulky pro zadání údajů o zatížení
- 4) Tabulky výsledků

Do tabulek lze zadat veškeré údaje o modelu konstrukce a zatížení v číselné podobě. Mezi skupinami tabulek lze přepínat pomocí tlačítek:

2.5 Nastavení jednotek

Nastavení jednotek lze provést kliknutím na: Nastavení -> Jednotky a desetinná místa

Jednotky lze nastavit pro:

- 1) Model
- 2) Zatížení
- 3) Výsledky
- 4) Kótování

Jednotky a desetinná místa X											
Program		Model Zatížení Výsledky	Kótování								
RFEM	~										
RF-STEEL Surfaces		Geometrie			Materialy						
RF-STEEL Members			Jednotka Des. místa			Jednotka					
RF-STEEL EC3		Délky:	m v	3	Moduly E G	MPa V	7				
		Denty.			Moduly E.G.	Will G					
RF-STEEL IS		Úhly:	• ~	2 🜩	Měrné tíhy:	kN/m^3 ~	1				
- RF-STEEL SIA		Theory and a shore		1	O su X da slada (sa sta Xa s sti	1.07	ā				
RF-STEEL BS		i loustky plochy:	mm 🗸	· •	Souc. teplotni roztaznosti:	I/K ∽					
RF-STEEL GB					Poissonovy součinitele:	- ~					
RF-STEEL CSA											
RF-STEEL AS					Součinitele:	- ~	1				
RF-STEEL NTC-DF											
RF-STEEL SP		Průřezy			Podpory / Tuhosti / Ortotro	pie					
RF-STEEL Plastic		Pozměn <i>r</i>	mm	1	Silve	MNL	7				
RF-STEEL SANS		Rozinery.	· · · · · ·		Sily.						
RF-STEEL Fatigue Mi		Průřezové charakteristiky:	mm 🖂 🖂	1 🌲	Délky u momentů:	m 🗸					
					D./		-				
		Delkove hmotnosti:	kg/m ∨		Delky:	m ~	1				
RE-ALLIMINUM ADM		Plochy:	m^2/m ~	3 📥	Úhlv:	rad 🗸 🗸	1				
RE-KAPPA		· · · · · · · · · · · · · · · · · · ·					_				
BE-I TB		Bezrozměrné			Ostatní						
RF-FE-LTB		2021021101110	_		ootaan						
RF-EL-PL		Součinitele:	- ~	2 🌲	Tíhové zrychlení:	m/s^2 ∽	1				
RF-C-TO-T		Procenta:	%	2	Hmotnosti	ka v	Л				
PLATE-BUCKLING		riocenta.	70 *	<u> </u>	Timoulosa.	ry ···					
RF-CONCRETE Surfa					Tlaky plynu:	Pa 🗸 🗸	1				
RF-CONCRETE Mem							ñ l				
					Molarni hmotnosti:	kg/mol ~	1				
					Tepelné vodivosti:	W/m/K ~	/				
RF-PUNCH Pro	\sim				•		_				
DE-TIMRED Dro	·]										
2 Storno OK Storno											
							_				

2.6 Nápověda k programu

Příručku k programu RFEM ve formátu pdf lze spustit pomocí klávesy F1 na klávesnici nebo kliknutím na:

Nápověda -> Manuál RFEM CSY.pdf - Adobe Acrobat Reader DC _ \times Soubor Úpravy Zobrazení Okna Nápověda \bigcirc Domovská stránka Nástroje RFEM_CSY.pdf Přihlásit se Q (\uparrow) 🛵 Sdílet 5 \bowtie $(\mathbf{1})$ 1 / 590 57% ... * ß Pří<u>d</u>avné moduly <u>O</u>kno Nápověda 4 Diubai 8 Д Manuál. F1 ÷¢ Ŧ 2 웥 Ø 品品品 Diagnóza systému... Vydání prosinec 2012 Autorizace Program Zkontrolovat aktualizace 16 Odeslat informace od zákazníka TeamViewer Prostorové konstrukce metodou konečných prvků Dlubal online b う O programu... **Popis programu** Všechna práva včetně práv k překladu vyhrazena. Bez výslovného souhlasu společnosti DLUBAL SOFTWARE S.R.O. není povo leno tento popis programu ani jeho jednotlivé části jakýmkoli způsobem dále šířit. O Dlubal Software s.r.o. Anglická 28 120 00 Praha 2 Tel: +420 222 518 568 +420 222 519 218 Fax Email: info@dlubal.cz Web: www.dlubal.cz rogram RFEM © 2012 Diubai Software s.r.o.