1. CHS Y-joint

Design of axial resistance of the CHS Y-joint is performed according to prEN 1993-1-8(2021), see Figure 1.1. The exact description and material properties of each member are given.

Figure 1.1 Joint geometry, internal forces

1.1. Symbols

d_i	is an overall diameter of CHS member i (i=0,1,2 or 3)
e	is an eccentricity of a joint
f _{y,i}	is a yield strength of member i (i=0,1,2 or 3)
A _i	is a cross sectional area of member i (i=0,1,2 or 3)
W _{el,i}	is an elastic section modulus of member i (i=0,1,2 or 3)
θ_i	is an included angle between brace member i and a chord (i=1,2 or 3)
β	is a ratio of the mean diameter or width of brace members, to that of the chord
γ	is a ratio of the chord width or diameter to twice its wall thickness
Q _f	is a chord stress factor
n	is a chord stress parameter
C _f	is a material factor
M _{ip,i,Ed}	is a design in-plane internal moment in member i (i=0,1,2 or 3)

M _{op,i,Ed}	is a design out-of-plane internal moment in member i (i = 0, 1, 2 or 3)
N _{i,Ed}	is a design internal axial force in member i (i=0,1,2 or 3);
N _{i,Rd}	is a design resistance of a joint expressed in terms of the internal axial force in member i (i = 0, 1, 2 or 3)

1.2. Design forces

$N_{0,Ed} = -339\ 700\ N$	$N_{1,Ed} = -33\ 600\ N$
$M_{ip,0,Ed} = 0,0 \text{ Nmm}$	$M_{ip,1,Ed} = 0,0 \text{ Nmm}$
$M_{op,0,Ed} = 0.0 Nmm$	$M_{op,1,Ed} = 0.0 \text{ Nmm}$

1.3. Material

f _{v.0} = 355,0 MPa	f _{v.1} = 355,0 MPa
y,0	y,1 ,

1.4. Geometry of sections $A_0 = 1\ 618\ mm^2$ $W_{el,0} = 39.8\cdot 10^3 mm^3$

1.5. Range of validity

$$0,2 \le \frac{d_1}{d_0} = \frac{38,0}{108,0} = 0,35 \le 1,0$$
$$10 \le \frac{d_0}{t_0} = \frac{108,0}{5,0} = 21,60 \le 50$$
$$\frac{d_1}{t_1} = \frac{38,0}{3,2} = 11,88 \le 50$$
$$t_1 = 3,2 \text{ mm} \le t_0 = 5,0 \text{ mm}$$
$$\theta_1 = 87,1^\circ \ge 30^\circ$$

1.6. Geometric ratios

$$\gamma = \frac{d_0}{2 \cdot t_0} = \frac{108,0}{2 \cdot 5,0} = 10,80$$

$$\beta = \frac{d_1}{d_0} = \frac{38,0}{108,0} = 0,35$$

1.7. Design of axial resistance of the joint

$$n = \frac{N_{o,Ed}}{A_0 \cdot f_{y,o}} + \sqrt{\left(\frac{M_{ip,0,Ed}}{W_{el,0} \cdot f_{y,o}}\right)^2 + \left(\frac{M_{op,0,Ed}}{W_{el,0} \cdot f_{y,o}}\right)^2} \\ = \frac{-339\ 700}{1\ 618 \cdot 355} + \sqrt{\left(\frac{0,0}{39,8 \cdot 10^3 \cdot 355}\right)^2 + \left(\frac{0,0}{39,8 \cdot 10^3 \cdot 355}\right)^2} = -0,59$$

$$\frac{C_1}{(compression)} \qquad (tension) \\ (tension) \\ C_1 = 0,45 - 0,25 * \beta \qquad C_1 = 0,20$$

 Table 1.1
 Exponent for a chord stress factor

$$C_1 = 0,45 - 0,25 \cdot \beta = 0,45 - 0,25 \cdot 0,35 = 0,36$$

 $Q_f = (1 - |n|)^{C_1} = (1 - |-0,59|)^{0,36} = 0,72$

C _f			
$f_y \le 355 MPa$	$C_{\rm f} = 1.0$		
355 MPa < f _y ≤ 460 MPa	$C_{\rm f} = 0.9$		
$460 \text{ MPa} < f_y \le 700 \text{ MPa}$	$C_{\rm f} = 0.8$		

Table 1.2 Material factors to resistance

 $C_{f} = 1,0$

1.7.1. Chord face failure

$$N_{1,Rd} = \frac{C_{f} \cdot \frac{f_{yo} \cdot t_{0}^{2}}{\sin \theta_{1}} \cdot (2,6 + 17,7 \cdot \beta^{2}) \cdot \gamma^{0,2} \cdot Q_{f}}{\gamma_{M5}}}{= \frac{1,0 \cdot \frac{355,0 \cdot 5,0^{2}}{\sin 87,1} \cdot (2,6 + 17,7 \cdot 0,35^{2}) \cdot 10,80^{0,2} \cdot 0,72}{1,25} = 39\,281\,N$$

1.7.2. Punching shear failure

Validity of the punching shear check:

$$d_1 = 38,0 \text{ mm} \le d_0 - 2 \cdot t_0 = 108,0 - 2 \cdot 5,0 = 98,0 \text{ mm}$$

$$N_{1,Rd} = \frac{C_{f} \cdot \frac{f_{yo}}{\sqrt{3}} \cdot t_{0} \cdot \pi \cdot d_{1} \cdot \frac{1 + \sin \theta_{1}}{2 \cdot \sin^{2} \theta_{1}}}{\gamma_{M5}} = \frac{1.0 \cdot \frac{355.0}{\sqrt{3}} \cdot 5.0 \cdot \pi \cdot 38.0 \cdot \frac{1 + \sin 87.1}{2 \cdot \sin^{2} 87.1}}{1.25}$$

Design resistance of the joint expressed in terms of the internal axial force in member 1 is $N_{1,Ed} = 39\ 281\ N$.

1.8. Design check

 $\frac{N_{1,Ed}}{N_{1,Rd}} = \frac{33\ 600}{39\ 281} = 0.86 \le 1.0$

It is satisfied.